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Homoclinic chaos in vacuum Rabi oscillations of moving two-level atoms

S. V. Prants and L. E. Kon’kov
Laboratory of Nonlinear Dynamical Systems, Pacific Oceanological Institute of the Russian Academy of Sciences,

690041 Vladivostok, Russia
~Received 24 May 1999; revised manuscript received 23 September 1999!

We study analytically and numerically vacuum Rabi oscillations ofN identical two-level atoms moving
through a single-mode lossless cavity. Equations of motion which take into account the atomic quantum
correlations are obtained for the quantum mechanical expectation values in the strong-coupling, rotating-wave,
pointlike, and Raman-Nath approximations. It is shown that moving atoms may demonstrate an unusual type
of spontaneous emission, the chaotic vacuum Rabi oscillations. This manifestation of quantum dynamical
chaos in the matter-vacuum interaction is caused by a spatial inhomogeneity of the cavity mode that modulates
the vacuum Rabi frequency of moving atoms. For small values of the depth of this modulation we use the
Melnikov method and show analytically the presence of homoclinic chaos in this interaction. Transition to
global chaos and global phase space stochasticity under conditions of the strong modulation are studied
numerically by computing the maximal Lyapunov exponentl of the atom-field dynamical system as a function
of the number and velocity of atoms and detuning. We find a curious structure of thel(N) dependence
reflecting an intermittent route to global chaos. The strength of chaos depends strongly on the initial state
preparation of atoms just before injecting into a cavity. It is shown that initially fully inverted atoms, which are
in a superfluorescent Dicke state, demonstrate much stronger chaos~under other equal conditions! than the
atoms prepared initially in a superradiant state with macroscopic polarization. A maser operating with two-
level Rydberg atoms to be injected into a high-Q superconducting microwave cavity seems to be a realistic
device for observing some manifestations of the chaotic vacuum Rabi oscillations.

PACS number~s!: 05.45.2a, 42.65.Sf, 42.50.Fx
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I. INTRODUCTION

The interaction between matter and vacuum, which
commonly evidenced by spontaneous emission, is one o
most fundamental dynamical interactions in nature. In f
space an excited atomic state decays irreversibly becaus
infinity of vacuum states is available to the radiated phot
It has been predicted that cavity-confined excited atoms m
experience an enhancement@1# or an inhibition@2# of spon-
taneous emission because of a cavity-induced modificatio
the vacuum-states density. These effects have been de
strated in a number of experiments in the microwave@3,4#,
infrared @5#, and optical@6,7# ranges.

In resonant cavites with one mode close to atomic tra
tion frequency,v f.va , two distinct regimes of spontaneou
emission are realizable. When the cavity dampingv f /Q is
large as compared with the vacuum Rabi frequency,v f /Q
@V0, the radiated photon is damped and an excited ato
state decays irreversibly much as it does in free spa
through at an enhanced rate. In the strong-coupling reg
corresponding to the opposite condition,v f /Q!V0, sponta-
neous emission becomes a reversible, oscillatory pro
when the atom and the field exchange excitation at the
V0. Such a process with a sample ofN identical atoms is
known under the name ‘‘collective vacuum Rabi oscil
tions,’’ which have been observed both with Rydberg ato
flying through a high-Q microwave cavity@8# and at optical
transitions in a high-finesse optical resonator@9#.

The simple quantum theory neglecting the cavity a
atomic damping and the spatial structure of the cavity m
~i.e., V0 is assumed to be constant during the interacti!
predicts in the rotating-wave approximation a periodic e
PRE 611063-651X/2000/61~4!/3632~9!/$15.00
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change of energy between two-level atoms and a sele
cavity mode at the enhanced rateV0AN ~see, for example,
Ref. @10#!. It has been demonstrated in numerical expe
ments by the present authors@11# that atomic motion through
a spatially inhomogeneous high-Q mode can change drast
cally the character of collective vacuum Rabi oscillations.
a recent communication@12#, one of the authors has show
analytically that the atomic motion produces homoclin
Hamiltonian chaos in vacuum Rabi oscillations. The pres
paper clarifies the subject by providing a detailed theoret
and numerical treatment of thisunusual type of spontaneou
emission, vacuum Rabi oscillations of identical two-level a
oms moving through a single-mode lossless cavity.

Another motivation of the present investigation is t
problem of quantum chaos connected with the question
correspondence between classical and quantum dynam
Experiments with two-level atoms confined in a cavity pr
vide a link between micro-, meso-, and macroscopic phys
Increasing the number of atoms in the cavity, one can fo
the atom-plus-cavity vacuum system to operate in differ
regimes, from one in which quantum fluctuations are dom
nant to one in which the system behaves quasiclassic
Semiclassical dynamical chaos in an ensemble of cav
confined two-level atoms has been numerically found a
investigated by a number of authors@13#. In particular, we
have shown@14# that two-level atoms moving through a sp
tially varied cavity mode produce, out of the atom-field res
nance, homoclinic Hamiltonian chaoseven in the rotating-
wave approximation. However, the semiclassica
approximation is known to neglectall quantum correlations
in the atom-field system. Therefore, the corresponding eq
tions of motion for fully decoupled quantum expectation v
3632 © 2000 The American Physical Society
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PRE 61 3633HOMOCLINIC CHAOS IN VACUUM RABI . . .
ues cannot describe vacuum Rabi oscillations at all since
state with fully inverted atoms and a vacuum field is a s
tionary state in the models of the papers@13,14#.

In the present paper we go beyond the simple semicla
cal factorization intending to take into account the source
spontaneous emission in the resulting equations of motio
the Heisenberg picture. The simplest way to do this is to t
into account quantum correlation between different ato
which are responsible for cooperative spontaneous emis
~see, for example, Refs.@15,16#!, and to deduce the respe
tive closed and tractableset of c-number equations for qua
tum dynamical expectation values. This is done in Sec
along with a discussion of the approximations and assu
tions involved. In Sec. III we find general exact solutions
the dynamical equations in two integrable limits. The ma
results of the paper are given in Sec. IV. We introduce fi
the Melnikov method and obtain analytical predictions
the onset of homoclinic chaos in vacuum Rabi oscillations
moving atoms in the near integrable regime with a we
spatial modulation of the vacuum Rabi frequency. Then
discuss the initial conditions for the atoms and investig
numerically with the help of the maximal Lyapunov exp
nentl the transition to global chaos that arises under con
tions of strong modulation ofV0. In Sec. V we give our
conclusions.

II. SET OF EQUATIONS FOR QUANTUM DYNAMICAL
EXPECTATION VALUES WITH ATOMIC

CORRELATIONS

Our model is as simple as posible. It consists ofN iden-
tical two-level atoms, interacting with a single field mode
a perfect cavity, with the following Hamiltonian:

H5\vaR31\v f S a†a1
1

2D1\V0~ t !~aR11a†R2!,

~1!

whereva andv f are the atomic transition frequency and t
frequency of the cavity mode, respectively. The operatorsa†

and a are the creation and annihilation operators for
mode under consideration and obey the commutation rela
@a,a†#51. The operatorsR65( js6

j are the total atomic
dipole operators composed of the raisings1

j and lowering
s2

j Pauli operators for the individual atoms;R35 1
2 ( js3

j

equals the total atomic energy operator apart from fac
\va . The collective operators obey commutation relation

@R1 ,R2#52R3 , @R3 ,R6#56R6 . ~2!

In maser experiments an atom passes along the axisx of a
closed cavity and consequently experiences a spatial m
lation of the coupling coefficient, the single-atom vacuu
Rabi frequencyV0. If we assume its velocity to be consta
va , then the effect of motion on the internal dynamics can
included in the usual wayV0(t)→V0(x/va).

In order to avoid complications, which are not essentia
the main scope of this paper, we have made a numbe
approximations and simplifications.

~1! The single mode, two-level, and rotating-wave a
proximations.
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~2! The pointlike approximation. In other words,N atoms
are assumed to be confined to a volume less than the ca
mode wavelength cubed and the atoms inside this volu
may be considered as undistinguishable. The pointlike
proximation seems to be reasonable in the microwave reg
with the wavelength of the order of 1 cm.

~3! The Raman-Nath approximation. We assume that
atoms are injected into a cavity with a velocity high enou
to enable us to neglect any change in their kinetic energy
the microwave region, the recoil energy of atoms accom
nying emission of photons is very small@14#.

~4! The strong-coupling regime. In this regime,N atoms
exchange excitation with a cavity field with a periodTR

52p/V0AN that is much shorter than both the atomic a
cavity relaxation times. The present Rydberg atom mas
can be operated in this regime, whereV0AN@v f /Q ~for a
review of Rydberg atom masers see Ref.@17#!.

~5! The assumption of partial decorrelation between
atomic and the field degrees of freedom. It means that w
deducing c-number equations of motion from operator eq
tions we neglect quantum atom-field correlators higher th
second-order ones. This mixed quantum-classical descrip
differs both from a semiclassical one@13,14#, when one ne-
glects quantum correlators ofall orders, and from fully quan-
tum description that leads to an infinite hierarchic set
equations for quantum correlators~cumulants!.

The problem of dynamical chaos in the quantum syst
with the Hamiltonian~1! will be treated in the Heisenber
representation as it is close in its spirit to classical mech
ics. Therefore, it is to be desired to derive a tractable clo
set of equations of motion for expectation values from
respective operator Heisenberg equations. The simplest
to do this is achieved by writing down the Heisenberg eq
tions for the atomic operators and the field operators, av
aging them over an initial quantum state and factorizing
the operator products of the type^(a6a†)Ra&, wherea5
6,3 @13,14#. This simple semiclassical approximation
known to neglect not only the atom-field correlation but t
atom-atom correlations as well. The atom-atom correlati
occur only through the mediation of the field generated
the atoms~we neglect the dipole-dipole interaction! and are
responsible for cooperative spontaneous emission.

In order to take into account the sources of spontane
emission in the Heisenberg representation one should go
yond the simple semiclassical factorization. Let us introdu
operators normalized to the numberN of atoms

A5
a

AN
, A†5

a†

AN
, Sa5

1

N
Ra ~3!

with the commutation relations

@A†,A#5
1

N
, @S1 ,S2#5

2

N
S3 , @S6 ,S3#57

1

N
S6 ,

a56,3, ~4!

and consider the following set of the bilinear products of t
operators
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3634 PRE 61S. V. PRANTS AND L. E. KON’KOV
A†A, S1S2 , U5AS11A†S2 , V5 i ~A†S22AS1!.
~5!

The Heisenberg equations for the density of the atomic
versionS3 and the operators~5! are easily derived from the
Hamiltonian~1!

d

dt
~A†A!52V0~ t !ANV,

d

dt
S35V0~ t !ANV,

d

dt
U5~v f2va!V, ~6!

d

dt
~S1S2!52iV0~ t !AN~S1AS32A†S3S2!,

d

dt
V52~v f2va!U22V0~ t !AN~S1S212A†AS3!.

At t50, just before injecting into a cavity, the atoms a
field are assumed to be uncorrelated. The initial quan
state, over which we shall average Eqs.~6!, is the following
product state:

uc~0!&5uca~0!& ^ uc f~0!&. ~7!

The equations of motion are obtained by taking the expe
tion values for the Heisenberg operators with the init
quantum state~7!. The nonlinearity of the two last equation
in the set@Eq. ~6!# brings second- and third-order correl
tions into the equations for the first moments. Our task is
‘‘save’’ those second-order atomic correlations which are
sponsible for the cooperative spontaneous emission an
derive a closed and tractable dynamical system. When a
aging the polarization operator we separate the term re
senting correlations between different atoms@16# R
5N22^( iÞ js1

i s2
j &, where the sum is over all pairs of dif

ferent atoms. Thus

^S1S2&5
1

N2 S K (
j 51

N

s1
j s2

j 1 (
iÞ j 51

N

s1
i s2

j L D
5

1

2N
1

1

N
^S3&1^R&, ~8!

where we have used the following property of the Pauli o
eratorss1s25 1

2 (I 1sz) with I being the identity operator
When averaging the products of three operators in the
two equations of Eq.~6! we factorize quantum correlators o
third order^S1AS3&, ^A†S3S2&, and^A†AS3& into products
of second-order and first-order ones~see the fifth assumption
in our list of approximations involved!. Using the known
properties of the Pauli operators,sz

i s2
i 52s2

i and s1
i sz

i

52s1
i , and the assumption of decorrelation between po

ization and inversion of different atoms,̂ sz
i s2

j &
5^sz

i &^s2
2 j& and ^s1

i sz
j &5^s1

i &^sz
2 j&, we obtain
-

m

a-
l

o
-
to
r-
e-

-

st

r-

^S1AS3&5^AS1&S ^S3&2
1

2ND ,

^A†S3S2&5^A†S2&S ^S3&2
1

2ND ,

^A†AS3&5^A†A&^S3&. ~9!

With the help of Eqs.~8! and ~9! we can now derive the
closed c-number equations of motion from the operat
equations~6!

ṅ52VN~t!v,

ż52VN~t!v,

u̇5~v21!v, ~10!

ṙ 52VN~t!zv,

v̇5~12v!u2VN~t!S z11

N
12r 12nzD ,

where dot denotes differentiation with respect to the dim
sionless time t5vat. The time-dependent and time
independent coupling coefficients are the dimensionless
lective vacuum Rabi frequency and the dimensionl
detuning, respectively

VN~t!5
V0~t!AN

va
, v5

v f

va
. ~11!

The classical variablesn5^A†A& andz52^S3& are the den-
sity of photons in a cavity and the density of the atom
inversion, respectively. The variablesu5^U& and v5^V&
are the atom-field correlators of second order describing
dressed atoms. The quantityr 5^R& represents correlation
among different atoms. If there are initially no correlation
polarization, and photons, we still have on the right side
the last equation in the set~10! the termz11 which equals
twice the density of the atoms in the excited state. Nam
this term is the source of spontaneous emission. It drivev,
which in turn drives the other variables in our atom-fie
dynamical system~10!, creating atom-atom correlations, po
larization, and cavity photons.

Two integrals of motion can be found by inspection fro
the system~10!. The first one

W5z12n ~12!

reflects a conservation of energy in a lossless cavity. T
other one

S5z214r ~13!

results from the unitarity of atomic evolution. The value
the constantSwill be found in Sec. IV in terms of the Dicke
cooperation number and the number of atoms.
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III. THE INTEGRABLE LIMITS OF THE EQUATIONS
OF MOTION

If a spatial inhomogeneity of the cavity mode can be n
glected~for example, with motionless atoms in the pointlik
approximation!, our model ~10! is integrable. It becomes
clear after finding the third integral of motion if one assum
the vacuum Rabi frequencyV0 to be constant. This extra
integral

C52VNu2~v21!z ~14!

reflects a conservation of the interaction energy between
tionless atoms and a cavity field that is a consequence o
rotating-wave approximation made.

With the help of the three integralsW, S, andC it is easy
to show that the density of the atomic inversion satisfies
following second-order nonlinear differential equation:

z̈53VN
2 z22F ~v21!212VN

2 S W1
1

ND Gz2~v21!C

2VN
2 S S1

2

ND , ~15!

ż~t50!52VNv0 , z~t50!5z0 .

The energy integral for Eq.~15! has the form

E5
1

2
ż21F, ~16!

where

F52VN
2 z31F ~v21!2

2
1VN

2 S W1
1

ND Gz2

2F ~v21!C1VN
2 S S1

2

ND Gz ~17!

is the ‘‘potential energy.’’ By inverting the elliptic integra
of the first kind

dt56
dz

A2~E2F !
, ~18!

it is easy to find the solution for the density of the atom
inversion in terms of the elliptic Jacobian function

z~t!5z11~z22z1!sn2FA1

2
~z32z1!VN~t2t1!;

z22z1

z32z1
G ,

~19!

where

t15
1

VNA2
E

z0

z1 dz

A~z2z1!~z2z2!~z2z3!
, ~20!

andz1,2,3 are the roots of the algebraic cubic equation

E2F50. ~21!
-

s

o-
he

e

The periodic exchange of energy between initially excit
atoms and cavity vacuum field to be described by Eq.~19! is
known as regular vacuum Rabi oscillations. The exact so
tions for the other variables are found after solving Eq.~15!

2n5W2z,

4r 5S2z2, ~22!

2VNu5C1~v21!z,

2VNv5 ż.

There exists another nontrivial integrable limit of th
equations of motion~10! when the frequency of the cavit
mode v f coincides exactly with the atomic transition fre
quencyva , i.e., if v51. The atom-field system withv51
is integrable for any kind of modulationf (t) of the vacuum
Rabi frequencyVN(t)[VNf (t) due to a reduction of the
five-dimensional problem~10! to the four-dimensional one
~the variableu becomes a constant!. In this integrable limit,
the general exact solution is obtained by puttingv51 in the
formulas ~15!–~22! and transforming to the new ‘‘time’’t
→*0

t f (t8)dt8. The resonant two-level atoms when movin
through a lossless single-mode cavity will experience a p
odic exchange of energy with the cavity fieldregardless of
the spatial structure of the cavity mode along the propag
tion axis. In the next section we will show what happen
with nonresonant two-level atoms moving in a spatia
varying field.

IV. CHAOTIC VACUUM RABI OSCILLATIONS

A. The onset of homoclinic chaos

We have shown in Sec. III that both in the limit of th
nonhomogeneous resonant interaction (v51) and in the
limit of the homogeneous nonresonant interaction (VN
5const) the vacuum Rabi oscillations are periodic. In p
ticular, the atomic inversion,z(t), is goverened by the non
linear oscillator equation~15! whose phase plane is divide
into regions of bounded and unbounded motion by a sep
trix loop corresponding to a homoclinic orbit

z~t!5z11~z22z1!tanh2FA1

2
~z32z1!VN~t2t0!G ,

~23!

wheret0 is the time parametrizing this orbit and the roo
z1,2 can found from Eqs.~17! and ~21! with z25z3 and the
given initial conditions. In this section we use the Melniko
method@18# to prove a homoclinic structure in the vicinity o
the unperturbed separatrix~23! that is produced out of reso
nance (vÞ1) even under an extremely small spatial mod
lation of the vacuum Rabi frequencyVN(t) of moving at-
oms. It leads to a replacement of the separatrix of
unperturbed system by a stochastic layer in the pertur
one. The modulation is assumed to be equal to

VN~t!5VN1e sinbvt, ~24!

wheree is sufficiently small as compared withVN , andbv
is the dimensionless modulation frequency withb5va /c be-
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3636 PRE 61S. V. PRANTS AND L. E. KON’KOV
ing the ratio of velocity of atoms to the velocity of ligh
Stable and unstable homoclinic manifolds of a hyperbo
fixed point coinciding in the unperturbed system (e50) be-
gin to intersect transversally in the perturbed system with
parametric modulation~24!. The signed distance between th
perturbed stable and unstable manifolds att0 along a normal
n to the unperturbed homoclinic manifold is proportional
eM (t0)1O(e2), where the Melnikov function is given by
@18#

M ~t0!5E
2`

`

n•Gdt. ~25!

The perturbation part of the vector fieldG has the form

G5S 2v sinbvt, 2v sinbvt, 0, 2zv sinbvt,

2S z11

N
12r 12nzD sinbvt D T

. ~26!

The Melnikov distance is nonzero only in the directionn
5(0,12v,2VN ,0,0)T. After evaluating the scalar produc
n•G on the separatrix~23! and carrying out the integratio
by parts we obtain the final result

M ~t0!5
2p~12v!~bv!2

VN
3 sinh~bvp/Az32z1VN!

cosbvt0 . ~27!

The Melnikov function has, out of resonance, simple
ros as a function oft0 implying transverse intersections b
tween stable and unstable manifolds in an infinite variety
homoclinic points. These intersections produce in the vic
ity of each homoclinic point a transformation of the type
the Smale horseshoe@19#. In other words, the initial volume
element in the system’s phase space stretches along th
stable manifold, shrinks along the stable manifold, and fo
It results in the local instability of almost all trajectorie
starting inside this homoclinic structure where Kolmogoro
Arnol’d-Moser ~KAM ! tori cannot exist because of changin
the topology of trajectories@20#. Thus the transverse inter
sections proven analytically above in the absence of re
nance lead to the onset of homoclinic chaos in the vacu
Rabi oscillations of moving atoms.

B. Initial conditions

The theory developed and the solutions obtained in
preceding sections are valid with arbitrary initial condition
We have only assumed atoms and field to be initially in
product state~7!. Because we are mainly interested in coo
erative spontaneous emission, we shall adopt the vac
state of the initial cavity field

uc f~0!&5u0&. ~28!

In the pointlike approximation, all the atoms experien
identical conditions and must be treated as undistinguish
particles. The collective states of aN-atom system are the
Dicke states@21# uR,M & which are labeled by the coopera
tion numberR and the transition numberM5Nz/2
c

e

-

f
-

un-
s.

-

o-
m

e
.
e
-
m

le

R2uR,M &5R~R11!uR,M &, R3uR,M &5M uR,M &,
~29!

R6uR,M &5@~R7M !~R6M11!#1/2uR,M61&,

where

R25
1

2
~R1R21R2R1!1R3

2 , R5
N

2
,

N

2
21, . . . ,1, 0 S 1

2D , M52R, 2R11, . . . ,R21, R.

~30!

Averaging the operatorR1R25N2S1S2 in Eq. ~8! over
the Dicke statesuR,M & and using the operator identity~30!
we can write down the atomic integral of motion~13! in
terms of the cooperation numberR and the number of atom
N

S5
4

N2
R~R11!2

2

N
. ~31!

Those Dicke states, which are symmetric under atom
change, possess the maximal cooperation numberR5N/2
and are easily realized with Rydberg atoms in cavities@17#.
In these statesuN/2,M & the excitation is symmetrically
shared among all atoms, and the collectiveN-atom system
has onlyN11 nondegenerate equidistant energy levels. B
ing prepared is one of the symmetric Dicke states, the sys
will make transitions, only into other symmetric states. It
easy to show thatS51 for the atoms initially prepared in a
symmetric Dicke state.

Computer simulations in this paper will be done with tw
different initial symmetric Dicke states. Adopting the term
nology of the theory of supperradiance~see Refs.@21,15#!,
we name the state

uca~0!&15UN2,0L ~32!

with strongly correlated atoms (r 051/4) and a macroscopic
electric dipole (z050) as a superradiant state. The radiati
is due to this dipole. Within the accuracyO(1/N) the super-
radiant state~32! can be shown@15# to be coincide with a
coherent atomic state prepared from the ground state b
classicalp/2 — pulse. The state with fully excited and un
correlated atoms

uca~0!&25UN2 ,
N

2 L ~33!

is known as a superfluorescent atomic state. The state
all the atoms on the upper level is realized, for example,
preparing the atoms in the ground state and then radiating
N-atom system with a classicalp — pulse. In the superfluo-
rescent stater 50 and no macroscopic polarization is prese
in the system (z51). Nevertheless, the atoms begin to ra
ate spontaneously creating atomic correlations, a ma
scopic dipole, and photons in a cavity. Other quasiclass
coherent atomic states, which may be represented as a l
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PRE 61 3637HOMOCLINIC CHAOS IN VACUUM RABI . . .
combination of the symmetric Dicke states, are prepa
from the ground state by a classical 2ugu — pulse withp/2
<u2gu<p @15#.

C. Transition to global chaos

We proved analytically the presence of homoclinic cha
in vacuum Rabi oscillations in the near integrable regi
where the depth of spatial modulation of the vacuum R
frequency of moving atoms@Eq. ~24!# is small as compared
with its amplitude value. In Hamiltonian systems, the s
chastic layer in the vicinity of an unperturbed separatrix
ists under any arbitrary small perturbation strength@20,22#.
Due to intersections of stable and unstable homoclinic m
folds invariant KAM tori cannot survive in such a layer. A
the perturbation strength increases, the chaotic dynam
typically, must cover extended regions of phase space.

In order to study transition to global chaos we will assu
atoms moving through a cavity in a directionx along which
the spatial variation of a cavity mode is described by
function

f ~x!5sin
ppx

Lc
. ~34!

It corresponds to aTEp mode in a rectangular cavity withLc
being the cavity length andp11 being the number of node
in the cavity. Then the vacuum Rabi frequency becomes
time-periodic function

VN~t!5VNsinbvt, ~35!

where the normalized cavity frequency~the dimensionless
detuning! is v5ppc/Lcva .

The origin of dynamical chaos is in extremal sensitive
initial conditions which is characterized by the Lyapun
exponents

l i5 lim
t→`

l i~t!, l i~t!5 lim
D i (0)→0

1

t
ln

D i~t!

D i~0!
, ~36!

where n(t) is the distance between two initially adjace
trajectories at timet, which may be specified as the Euclid
ean distance between two phase-space points. Due to
conserved quantities~12! and ~13!, the motion of the five-
dimensional atom-field system with moving atoms~10! is
restricted on a three-dimensional hypersurface and chara
ized by three Lyapunov numbers (l i ,i 51,2,3). The volume
of a given element of the phase space of our conserva
system should be invariant, i.e.,l11l21l350. Therefore,
we have positive, negative, and zero Lyapunov exponent
l i,0, then the volume element shrinks in the correspond
direction, and ifl i.0, then it expands exponentially in tha
direction. One has the linear growth ifl i50. A chaotic flow
arises when the initial volume element stretches, shrinks,
folds ~for a review of dynamical chaos in Hamiltonian sy
tems see Refs.@20,22,23#!. Because of the global confine
ment in phase space of the atom-field system, the local
ponential divergence of trajectories, which produces a lo
stretching, is accompanied by folding. Repeated stretch
and folding produces homoclinic chaos in cooperative em
sion and absorption by moving two-level atoms. For chao
d
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motion, the maximal Lyapunov exponent is a measure of
rate of divergence of phase trajectories. For a wide clas
dynamical systems~see Refs.@22,23#!, l has been shown to
be of the order of the reciprocal of a mixing timetc , the
time scale of decay of a correlation functionC(t)
;exp(2t/tc). It means that the mixing property of chao
follows from the property of local dynamical instability.

The maximal Lyapunov exponentl gives us the quanti-
tative criterion of dynamical chaos. The motion is said to
chaotic when l.0. We have computed the maxima
Lyapunov exponents of the atom-field system~10! under the
perturbation in the form~35! with the following initial con-
ditions: no photon present and the atoms strongly correla
at t50

uc~0!&15u0& ^UN2,0L : S n05z05u05v050, r 05
1

4D ,

~37!

and no photons present and the atoms uncorrelated att50

uc~0!&25u0& ^UN2 ,
N

2 L : ~n05r 05u05v050, z051!.

~38!

As was shown in the preceding subsection, both ato
states can be prepared from the ground atomic state b
classical pulse of the appropiate area just before injecting
atoms into a cavity.

Numerical experiments have been carried out for the
namical system~10! with those values of parameters th
may be considered as achievable, in principle, with a R
berg atom maser, a device operating with Rydberg two-le
atoms moving through a high-Q superconducting microwave
cavity @3,8,17#. This device can be really operated in th
regime when all the assumptions adopted in our model~see
Sec. II! may be considered as valid. In the strong-coupli
regime, the one-photon vacuum Rabi frequency of a sin
atom may reachV0.106 rad/s@17#. The period of collec-
tive vacuum Rabi oscillations 2p/V0AN is much shorter
than the lifetimes of Rydberg states and microwave phot
(.1022 s) in a few centimeter size cavity withQ.109. It
implies the Hamiltonian approach, strong-coupling lim
pointlike, and Raman-Nath approximations adopted to
valid. Typical transition frequencies between working Ry
berg states are in the rangeva.1010–1011 rad/s. The di-
mensionless single-atom and collective vacuum Rabi
quencies with the given value ofV0 are estimated to be in
the rangesV5V0 /va.1025–1024 and VN5V0AN/va
.1 –10 ~with N51010), respectively.

First of all, we compute the maximal Lyapunov expone
l as a function of the number of atomsN.The numerical
simulations are run for the nonresonant case,v50.9, with
the dimensionless single-atom vacuum Rabi frequencyV
51025 and the dimensionless velocity of atomsb50.01 and
0.001. Figure 1 demonstrates the dependence of the max
Lyapunov exponent on the common logarithm of the num
of atoms for the superradiant initial condition~37!. There is a
curious structure of the dependencel(log10N) in the begin-
ning of transition to global chaos. Figure 1~b! shows enlarge-
ment of this structure. Quite regular peaks on a fine sc
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reflect an intermittent route to chaos and a possible cas
of bifurcations when changing the number of atoms in
atomic ‘‘droplet’’ to be injected into a cavity. Under th
superradiant initial condition and with given Rabi frequen
and the detuning, vacuum Rabi oscillations becomes cha
whenN reaches.109 atoms.

Figure 2~a! demonstrates the dependencel(log10N) with
initially fully inverted atoms@see Eq.~38!# at the same fixed
values of the control parameters as in Fig. 1. It should
stressed that with the superfluorescent atoms the streng
chaos measured by the value ofl at a fixed value ofN is
almost ten times more than that with the superradiant ato
and chaos begins to show up withN.108 atoms. As a result
of extremal instability of the system with initially fully in-
verted atoms, the respective dependencel(log10N) is a
highly irregular one. In Fig. 2~b! the dependence ofl on the
number of atoms is computed atb50.001, i.e., atva53
3105 m/s.

FIG. 1. ~a! Dependence of the maximal Lyapunov exponenl
on the number of atomsN on a logarithmic scale for the superrad
ant initial atomic stateuN/2,0&:V51025,v50.9,b50.01; ~b! en-
largement of the initial portion of this dependence. All variab
and parameters are in dimensionless units:V5V0 /va , v
5v f /va , andb5va /c.
de
n

tic

e
of

s,

Behavior of the maximal Lyapunov exponent near t
atom-cavity resonance is computed atVN58.5, N51010,
andva533105 m/s(b50.001) with initially fully inverted
atoms and shown in Fig. 3. At exact resonance, the at
field dynamics was analytically shown in Sec. III to be reg
lar. In this casel should be equal to zero as one can see
the figure atv51. Nearby the exact resonance, Fig. 3 sho
very strong chaos with the values ofl of the order of unity.
Dependence ofl on the velocity of initially fully inverted
atoms has been computed atVN58.4, N51010, and v
50.9. A fragment of this rather irregular dependence o
logarithmic scale in the velocity rangeva533104–3
3105 m/s is shown in Fig. 4. Weak chaos (l.0.01) begins
to show up with the velocity of atoms of the order ofva

.33104 m/s.
It should be stressed that chaos arises in the adiab

regime of the parametric vacuum Rabi oscillations,bv
!VN , where the frequency of the spatial modulation
much less than the collective vacuum Rabi frequency, tha

FIG. 2. Dependencel(N) on a logarithmic scale for the supe
fluorescent initial atomic stateuN/2,N/2&:V51025,v50.9. ~a! b
50.01; ~b! b50.001. All variables and parameters are in the sa
dimensionless units as in Fig. 1.
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FIG. 3. Dependence ofl on the normalized cavity frequency~dimensionless detuning! near the atom-cavity resonance for the sup
fluorescent initial atomic state :VN58.5,N51010, andb50.001. All variables and parameters are in the same dimensionless units as i
1 with VN5V0AN/va .
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the frequency of the energy exchange between the collec
of N identical atoms and a cavity mode.

V. CONCLUSION

Under appropriate conditions, cooperative spontane
emission from moving two-level atoms becomes a revers
process. In the present work we have shown that the simp
model of this process may demonstrate a very complica
dynamics which is chaotic in the sense of extremal sens
on

us
le
st
d
-

ity to initial atomic state. The basic results of our study are
follows.

The dynamical equations for quantum expectation val
that take into account quantum atomic correlations~respon-
sible for the cooperative spontaneous emission! are derived.
The equations of motion are shown to be integrable in
limit of exact resonance between moving atoms and a s
tially inhomogeneous cavity mode and in the limit of a sp
tially homogeneous field interacting with nonresonant atom
The respective vacuum Rabi oscillations may be conside
as periodic in these limits.
te :
FIG. 4. Dependence ofl on the velocity of atoms~in m/s units! on a logarithmic scale for the superfluorescent initial atomic sta
VN58.4, N51010, andv50.9.
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In general, moving nonresonant atoms may demonstra
type of reversible spontaneous emission, chaotic vacu
Rabi oscillations, which are shown to be of a homoclin
nature. This process depends strongly on the initial prep
tion of atoms just before injecting into a cavity. Under t
other equal conditions, chaos is much stronger with atom
be prepared in the fully inverted stateuN/2,N/2& than with
those prepared initially in the superradiant stateuN/2,0&. The
numerical experiments computing maximal Lyapunov ex
nents predict the values of the control parameters~the detun-
ing, the velocity, and the number of atoms! for which it
e
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el
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d
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would be worthwhile to search for the chaotic vacuum R
oscillations in real experiments.

Rydberg atoms in superconducting microwave cavit
are a well-suited system to observe manifestations of qu
tum chaos in the vacuum Rabi oscillations. This device c
be actually operated in the regime when all the assumpt
adopted in our model may be considered as valid.
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