PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Homoclinic chaos in vacuum Rabi oscillations of moving two-level atoms
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We study analytically and numerically vacuum Rabi oscillationdNoidentical two-level atoms moving
through a single-mode lossless cavity. Equations of motion which take into account the atomic quantum
correlations are obtained for the quantum mechanical expectation values in the strong-coupling, rotating-wave,
pointlike, and Raman-Nath approximations. It is shown that moving atoms may demonstrate an unusual type
of spontaneous emission, the chaotic vacuum Rabi oscillations. This manifestation of quantum dynamical
chaos in the matter-vacuum interaction is caused by a spatial inhomogeneity of the cavity mode that modulates
the vacuum Rabi frequency of moving atoms. For small values of the depth of this modulation we use the
Melnikov method and show analytically the presence of homoclinic chaos in this interaction. Transition to
global chaos and global phase space stochasticity under conditions of the strong modulation are studied
numerically by computing the maximal Lyapunov exponemf the atom-field dynamical system as a function
of the number and velocity of atoms and detuning. We find a curious structure of(fpe dependence
reflecting an intermittent route to global chaos. The strength of chaos depends strongly on the initial state
preparation of atoms just before injecting into a cavity. It is shown that initially fully inverted atoms, which are
in a superfluorescent Dicke state, demonstrate much stronger @nades other equal conditionshan the
atoms prepared initially in a superradiant state with macroscopic polarization. A maser operating with two-
level Rydberg atoms to be injected into a hi@hsuperconducting microwave cavity seems to be a realistic
device for observing some manifestations of the chaotic vacuum Rabi oscillations.

PACS numbgs): 05.45-a, 42.65.Sf, 42.50.Fx

[. INTRODUCTION change of energy between two-level atoms and a selected
cavity mode at the enhanced reﬁb\/ﬁ (see, for example,

The interaction between matter and vacuum, which isRef. [10]). It has been demonstrated in numerical experi-
commonly evidenced by spontaneous emission, is one of th@ients by the present authdfsl] that atomic motion through
most fundamental dynamical interactions in nature. In freey spatially inhomogeneous high-mode can change drasti-
space an excited atomic state decays irreversibly because aally the character of collective vacuum Rabi oscillations. In
infinity of vacuum states is available to the radiated photona recent communicatiofl2], one of the authors has shown
It has been predicted that cavity-confined excited atoms magnalytically that the atomic motion produces homoclinic
experience an enhancemé¢t or an inhibition[2] of spon-  Hamiltonian chaos in vacuum Rabi oscillations. The present
taneous emission because of a cavity-induced modification ipaper clarifies the subject by providing a detailed theoretical
the vacuum-states density. These effects have been demaind numerical treatment of thisiusual type of spontaneous
strated in a number of experiments in the microwd®&],  emissionvacuum Rabi oscillations of identical two-level at-
infrared[5], and optical6,7] ranges. oms moving through a single-mode lossless cavity.

In resonant cavites with one mode close to atomic transi- Another motivation of the present investigation is the
tion frequencyw¢=w,, two distinct regimes of spontaneous problem of quantum chaos connected with the question of
emission are realizable. When the cavity dampingQ is  correspondence between classical and quantum dynamics.
large as compared with the vacuum Rabi frequengy,Q Experiments with two-level atoms confined in a cavity pro-
>(),, the radiated photon is damped and an excited atomigide a link between micro-, meso-, and macroscopic physics.
state decays irreversibly much as it does in free spacéncreasing the number of atoms in the cavity, one can force
through at an enhanced rate. In the strong-coupling regimehe atom-plus-cavity vacuum system to operate in different
corresponding to the opposite conditias,/Q<()q, sponta-  regimes, from one in which quantum fluctuations are domi-
neous emission becomes a reversible, oscillatory processant to one in which the system behaves quasiclassically.
when the atom and the field exchange excitation at the rat8emiclassical dynamical chaos in an ensemble of cavity-
Qq. Such a process with a sample Nfidentical atoms is confined two-level atoms has been numerically found and
known under the name “collective vacuum Rabi oscilla-investigated by a number of authdrk3]. In particular, we
tions,” which have been observed both with Rydberg atomshave showri14] that two-level atoms moving through a spa-
flying through a highQ microwave cavity{8] and at optical tially varied cavity mode produce, out of the atom-field reso-
transitions in a high-finesse optical resond@j: nance, homoclinic Hamiltonian chaewven in the rotating-

The simple quantum theory neglecting the cavity andwave approximation However, the semiclassical
atomic damping and the spatial structure of the cavity modepproximation is known to negleeil quantum correlations
(i.e., Qg is assumed to be constant during the interagtionin the atom-field system. Therefore, the corresponding equa-
predicts in the rotating-wave approximation a periodic ex-tions of motion for fully decoupled quantum expectation val-
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ues cannot describe vacuum Rabi oscillations at all since the (2) The pointlike approximation. In other words,atoms
state with fully inverted atoms and a vacuum field is a sta-are assumed to be confined to a volume less than the cavity-
tionary state in the models of the papé§is,14. mode wavelength cubed and the atoms inside this volume
In the present paper we go beyond the simple semiclassimay be considered as undistinguishable. The pointlike ap-
cal factorization intending to take into account the sources oproximation seems to be reasonable in the microwave region
spontaneous emission in the resulting equations of motion iwith the wavelength of the order of 1 cm.
the Heisenberg picture. The simplest way to do this is to take (3) The Raman-Nath approximation. We assume that the
into account quantum correlation between different atomsatoms are injected into a cavity with a velocity high enough
which are responsible for cooperative spontaneous emissidn enable us to neglect any change in their kinetic energy. In
(see, for example, Ref§15,16]), and to deduce the respec- the microwave region, the recoil energy of atoms accompa-
tive closed and tractablset of c-number equations for quan- nying emission of photons is very sméil4].
tum dynamical expectation values. This is done in Sec. Il (4) The strong-coupling regime. In this reginig,atoms
along with a discussion of the approximations and assumpexchange excitation with a cavity field with a peridc
tions involved. In Sec. Ill we find general exact solutions of =24/Q,N that is much shorter than both the atomic and
the dynamical equations in two integrable limits. The maincavity relaxation times. The present Rydberg atom masers
results of the paper are given in Sec. IV. We introduce firsican be operated in this regime, wh@@\/ﬁ>wf/Q (for a
the Melnikov method and obtain analytical predictions forreview of Rydberg atom masers see Héf7)).
the onset of homoclinic chaos in vacuum Rabi oscillations of (5) The assumption of partial decorrelation between the
moving atoms in the near integrable regime with a weakatomic and the field degrees of freedom. It means that when
spatial modulation of the vacuum Rabi frequency. Then wejeducing c-number equations of motion from operator equa-
discuss the initial conditions for the atoms and investigat@jons we neglect quantum atom-field correlators higher than
numerically with the help of the maximal Lyapunov expo- second-order ones. This mixed quantum-classical description
nent\ the transition to global chaos that arises under condidiffers both from a semiclassical ofi#3,14], when one ne-
tions of strong modulation of),. In Sec. V we give our glects quantum correlators afl orders, and from fully quan-

conclusions. tum description that leads to an infinite hierarchic set of
equations for quantum correlatofumulants.
Il. SET OF EQUATIONS FOR QUANTUM DYNAMICAL The problem of dynamical chaos in the quantum system
EXPECTATION VALUES WITH ATOMIC with the Hamiltonian(1) will be treated in the Heisenberg
CORRELATIONS representation as it is close in its spirit to classical mechan-

ics. Therefore, it is to be desired to derive a tractable closed
Our model is as simple as posible. It consistsNoiden-  set of equations of motion for expectation values from the
tical two-level atoms, |nteraCt|ng with a Slngle field mode in respecuve Operator He|senberg equa“ons The S|mp|est way
a perfect cavity, with the following Hamiltonian: to do this is achieved by writing down the Heisenberg equa-
tions for the atomic operators and the field operators, aver-
aging them over an initial quantum state and factorizing all
the operator products of the tygéa+a')R,), wherea=
(1) +,3 [13,14. This simple semiclassical approximation is
known to neglect not only the atom-field correlation but the
wherew, andw; are the atomic transition frequency and the atom-atom correlations as well. The atom-atom correlations
frequency of the cavity mode, respectively. The opera#drs occur only through the mediation of the field generated by
and a are the creation and annihilation operators for thethe atomswe neglect the dipole-dipole interactjoand are
mode under consideration and obey the commutation relatiofesponsible for cooperative spontaneous emission.
[a,a’]=1. The operatorR. =3, 0'+ are the total atomic In order to take into account the sources of spontaneous
dipole operators composed of the ralsmg and Iowerlng emission in the Heisenberg representation one should go be-
ol Pauli operators for the individual atom&;= 22 ah yond the simple semiclassical factorization. Let us introduce
equals the total atomic energy operator apart from factopperators normalized to the numtrof atoms
hw,. The collective operators obey commutation relations

1
H=%w,Ry+ 7wy aTa+ +hQ0(t)(aR, +a'R_),

a : al 1
[R:,R_]=2R3, [R3,R:]=*R.. ) A:\/_ﬁ’ A :\/_N’ Sa=y Re (3

In maser experiments an atom passes along thexaafsa
closed cavity and consequently experiences a spatial modwith the commutation relations
lation of the coupling coefficient, the single-atom vacuum
Rabi frequency(},. If we assume its velocity to be constant 1
v, then the effect of motion on the internal dynamics can be  [AT,A]= N [S+S-0=y Ss [S:Ss]=+S=
included in the usual waf(t) —Qq(x/vy).

In order to avoid complications, which are not essential to
the main scope of this paper, we have made a number of a==*3, 4
approximations and simplifications.

(1) The single mode, two-level, and rotating-wave ap-and consider the following set of the bilinear products of the
proximations. operators
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ATA, S.S_, U=AS,+A'S_, V=i(ATS_-AS,). 1
(5) (S:AS)=(AS)|(Sa)~ 5y
The Heisenberg equations for the density of the atomic in- 1
versionS; and the operator&) are easily derived from the AfTs.S V=(ATS_ ( __)
Hamiltonian(1) (A'S:S-)=( (S 2N)’
d ATAS)=(ATA : 9
—(ATA)=— Q1) VNV, (ATAS) =(ATAN(Ss) (9)

dt
With the help of Eqs(8) and(9) we can now derive the
closed c-number equations of motion from the operator

d
pre e UHONNY

equationg6)
d I.":_QN(T)U,
GtU= (@ wa)V, (6)
z=2Q\(7)v,
d , ; .
§1(5+5-)=2i00(1) IN(S,AS;~ATS;S ), U=(w—1)v, (10)
(0= 0y U—204(t) JN(S. S + 2ATAS, . == (nz,

dt

. z+1
v=(1-w)u—Qu(7) T+2r+2nz

At t=0, just before injecting into a cavity, the atoms and
field are assumed to be uncorrelated. The initial quantum

state, over WhiCh we shall average E(f, is the following  \yhere dot denotes differentiation with respect to the dimen-
product state: sionless time r=w,t. The time-dependent and time-
independent coupling coefficients are the dimensionless col-

|4(0))=[¢a(0))®|41(0)). @) lective vacuum Rabi frequency and the dimensionless
detuning, respectively

The equations of motion are obtained by taking the expecta-
tion values for the Heisenberg operators with the initial

quantum staté€7). The nonlinearity of the two last equations Qn(7)= M, 0= ﬂ_ (11)
in the set[Eq. (6)] brings second- and third-order correla- o8 OF

tions into the equations for the first moments. Our task is to
“save” those second-order atomic correlations which are reThe classical variables=(ATA) andz=2(S;) are the den-
sponsible for the cooperative spontaneous emission and faty of photons in a cavity and the density of the atomic
derive a closed and tractable dynamical system. When avefaversion, respectively. The variables=(U) and v =(V)
aging the polarization operator we separate the term reprére the atom-field correlators of second order describing the
senting correlations between different atonj6] R  dressed atoms. The quantity-(R) represents correlations
=N"2%(%;,;0', 0 ), where the sum is over all pairs of dif- among different atoms. If there are initially no correlations,
ferent atoms. Thus polarization, and photons, we still have on the right side of
the last equation in the s€t0) the termz+1 which equals

1 twice the density of the atoms in the excited state. Namely,

(S48.)=

N
z iy
o.o_+
N2 <11 * i£]

Il
-

_ 1 1
=on TN (SR, (8)

this term is the source of spontaneous emission. It driyes
which in turn drives the other variables in our atom-field
dynamical systeng10), creating atom-atom correlations, po-
larization, and cavity photons.

Two integrals of motion can be found by inspection from
the system(10). The first one

where we have used the following property of the Pauli op-

eratorso . o_ = 3(l + o,) with | being the identity operator.

W=2z+2n (12

When averaging the products of three operators in the last

two equations of Eq6) we factorize quantum correlators of

third order(S,AS;), (A'S;S_), and(ATAS;) into products
of second-order and first-order on@ge the fifth assumption
in our list of approximations involved Using the known
properties of the Pauli operators,c'=—o¢' and o', o,

reflects a conservation of energy in a lossless cavity. The
other one

S=272+4r (13

=—o',, and the assumption of decorrelation between polarresults from the unitarity of atomic evolution. The value of

ization and inversion of different atoms(o,o’ )
=(ay)(o_'y and(c', ohy=(c', ){a,'), we obtain

the constang will be found in Sec. IV in terms of the Dicke
cooperation number and the number of atoms.
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Ill. THE INTEGRABLE LIMITS OF THE EQUATIONS
OF MOTION

If a spatial inhomogeneity of the cavity mode can be ne
glected(for example, with motionless atoms in the pointlike
approximation, our model (10) is integrable. It becomes
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The periodic exchange of energy between initially excited
atoms and cavity vacuum field to be described by &§) is
known as regular vacuum Rabi oscillations. The exact solu-

tions for the other variables are found after solving Bdp)

2n=W-z,

clear after finding the third integral of motion if one assumes

the vacuum Rabi frequenc§), to be constant. This extra
integral

C=20Uu—(w—1)z (14)

reflects a conservation of the interaction energy between mo-
tionless atoms and a cavity field that is a consequence of the

rotating-wave approximation made.

With the help of the three integral, S andC it is easy
to show that the density of the atomic inversion satisfies th
following second-order nonlinear differential equation:

P 1
z=30\2°— W+N z—(w—1)C

(w—1)2+20%

—QZ(S+ 3) (15)
N N/’

2(7=0)=2Q0\vo, 2(7=0)=2,.

The energy integral for Eq15) has the form

1.
E=§zz+F, (16)
where
(w—1)? 1
F=—ORZ+| ——+ O} W+ | |7
5 2
—|(0=D)C+O{| S+ 5|z (17

is the “potential energy.” By inverting the elliptic integral
of the first kind

dz

it is easy to find the solution for the density of the atomic
inversion in terms of the elliptic Jacobian function

(18)

1 Z;—17;
Z(T):Zl"'(zz_zl)sn2 E(Zs_Zl)QN(T—Tl);z -z
3721
(19
where
1 (2 dz
Tl (20

QN\/E 20 (2= 21)(2—2,) (2~ Z3) ,
andz, , ; are the roots of the algebraic cubic equation

E-F=0. (21)

4r=S—72, (22)

20yu=C+(w—1)z,
ZQNU:.Z.
There exists another nontrivial integrable limit of the

equations of motior(10) when the frequency of the cavity
mode w; coincides exactly with the atomic transition fre-

%]uencywa, i.e., if o=1. The atom-field system witkh=1

is integrable for any kind of modulatiof{ 7) of the vacuum
Rabi frequencyQ(7)=Qnf(7) due to a reduction of the
five-dimensional problenil10) to the four-dimensional one
(the variableu becomes a constgniin this integrable limit,
the general exact solution is obtained by putting 1 in the
formulas (15)—(22) and transforming to the new “time’r

— [gf(7')dr’. The resonant two-level atoms when moving
through a lossless single-mode cavity will experience a peri-
odic exchange of energy with the cavity fialdgardless of
the spatial structure of the cavity mode along the propaga-
tion axis In the next section we will show what happens
with nonresonant two-level atoms moving in a spatially
varying field.

IV. CHAOTIC VACUUM RABI OSCILLATIONS
A. The onset of homoclinic chaos

We have shown in Sec. lll that both in the limit of the
nonhomogeneous resonant interactian=1) and in the
limit of the homogeneous nonresonant interactiof y(
=const) the vacuum Rabi oscillations are periodic. In par-
ticular, the atomic inversiorg(7), is goverened by the non-
linear oscillator equationil5) whose phase plane is divided
into regions of bounded and unbounded motion by a separa-
trix loop corresponding to a homoclinic orbit

1
\/E(ZS_Zl)QN(T_ To)},

(23

2(1)=2,+(z,— zy)tanlk?

where 7 is the time parametrizing this orbit and the roots
z; » can found from Eqs(17) and (21) with z,=z3 and the
given initial conditions. In this section we use the Melnikov
method 18] to prove a homoclinic structure in the vicinity of
the unperturbed separatri3) that is produced out of reso-
nance @+ 1) even under an extremely small spatial modu-
lation of the vacuum Rabi frequendyy(7) of moving at-
oms. It leads to a replacement of the separatrix of the
unperturbed system by a stochastic layer in the perturbed
one. The modulation is assumed to be equal to
Qn(n)=Qy+esinboT, (24

wheree is sufficiently small as compared with, andbw
is the dimensionless modulation frequency viith v, /c be-
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ing the ratio of velocity of atoms to the velocity of light. R2|R,M>=R(R+ 1)|R,M), R3R,M)=M|R,M),
Stable and unstable homoclinic manifolds of a hyperbolic (29
fixed point coinciding in the unperturbed systee=0) be-

gin to intersect transversally in the perturbed system with the R.|RM)=[(R¥M)(REM + DIYIRM + 1),
parametric modulatiof24). The signed distance between the

perturbed stable and unstable manifoldsg@along a normal  Where

n to the unperturbed homoclinic manifold is proportional to

eM (1) +O(€?), where the Melnikov function is given by R2=}(R+R IR R+)+R§ R= E
[18] 2 - ' 2’

= N 1
M(To):f n-Gdr. 25  =-1,....1, 0(5)' M=-R, —R+1,...R—1, R.

2
(30
The perturbation part of the vector fietd has the form . ) )
Averaging the operatdR, R_=N“S, S_ in Eq. (8) over
the Dicke state$R,M) and using the operator identit0)
G=(—v sinbw7, 2vsinbwr, 0, —zv sinbwr, we can write down the atomic integral of moti¢a3) in
terms of the cooperation numbRrand the number of atoms
T N

sinbwr (26)

Z+1+2 +2
T r nz

4 2
. . . . N S= —R(R+1)— —. 31
The Melnikov distance is nonzero only in the direction N2 ( ) N (3D
=(0,1- »,20,0,0)". After evaluating the scalar product
n-G on the separatrix23) and carrying out the integration Those Dicke states, which are symmetric under atom ex-

by parts we obtain the final result change, possess the maximal cooperation nunibeiN/2
and are easily realized with Rydberg atoms in cavitieg.
2m(1— w)(bw)? In these state§N/2,M) the excitation is symmetrically
M(7o) = —— cosbw7y. (27)  shared among all atoms, and the collect@tom system
Qsint(be m/\z3 =2, 0n) has onlyN+ 1 nondegenerate equidistant energy levels. Be-

ing prepared is one of the symmetric Dicke states, the system
‘will make transitions, only into other symmetric states. It is

[\?VS as atftkj)lnctlor:j ot Lmbrilylng tr_?nlzve_rse '”.teffsi"t"’”? tt)e- gasy to show tha=1 for the atoms initially prepared in a
een stable and unstable manifolds in an infinite variety °symmetric Dicke state.

homoclinic points. These intersections produce in the vicin- Computer simulations in this paper will be done with two
ity of each homoclinic point a transformation of the type Ofdifferent initial symmetric Dicke states. Adopting the termi-

the Smale horseshd&9]. In other words, the initial volume .
element in the system’s phase space stretches along the qrbcgong;/m(g tt;]: St?:tgry of supperradian¢eee Refs[21,15),

stable manifold, shrinks along the stable manifold, and folds.

It results in the local instability of almost all trajectories N

starting inside this homoclinic structure where Kolmogorov- |42(0)),= ’§’O> (32
Arnol'd-Moser (KAM ) tori cannot exist because of changing

the topology of trajectorief20]. Thus the transverse inter- with strongly correlated atoms {=1/4) and a macroscopic

sections proven analytically above in the absence of reS%lectric dipole ¢;=0) as a superradiant state. The radiation

nance lead to the onset of homoclinic chaos in the vacuumy 4 e to this dipole. Within the accura€y(1/N) the super-
Rabi oscillations of moving atoms. radiant statg(32) can be showr15] to be coincide with a
N 3 coherent atomic state prepared from the ground state by a
B. Initial conditions classicalm/2 — pulse. The state with fully excited and un-

The theory developed and the solutions obtained in th&€orrelated atoms
preceding sections are valid with arbitrary initial conditions.
We have only assumed atoms and field to be initially in the | a(0)),= ’E E> (33)
product stat€7). Because we are mainly interested in coop- a 2°2
erative spontaneous emission, we shall adopt the vacuum

The Melnikov function has, out of resonance, simple ze

state of the initial cavity field is known as a superfluorescent atomic state. The state with
all the atoms on the upper level is realized, for example, by
|4:(0))=|0). (28) preparing the atoms in the ground state and then radiating the

N-atom system with a classical — pulse. In the superfluo-

In the pointlike approximation, all the atoms experiencerescent state=0 and no macroscopic polarization is present
identical conditions and must be treated as undistinguishabli@& the system £=1). Nevertheless, the atoms begin to radi-
particles. The collective states ofNratom system are the ate spontaneously creating atomic correlations, a macro-
Dicke stateg21] |R,M) which are labeled by the coopera- scopic dipole, and photons in a cavity. Other quasiclassical
tion numberR and the transition numbevl = Nz/2 coherent atomic states, which may be represented as a linear
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combination of the symmetric Dicke states, are preparednotion, the maximal Lyapunov exponent is a measure of the
from the ground state by a classicah?2 — pulse with7/2  rate of divergence of phase trajectories. For a wide class of
<|2y|< [15]. dynamical systemésee Refs[22,23), A has been shown to
be of the order of the reciprocal of a mixing timrg, the
C. Transition to global chaos time scale of decay of a correlation functio@(t)

. - ~exp(—t/7). It means that the mixing property of chaos
We proved analytically the presence of homoclinic Chaosrollows from the property of local dynamical instability.

in vacuum Rabi oscillations in the near integrable regime The maximal Lyapunov exponent gives us the quanti-

where the depth .Of spatial modulat|_on of the vacuum Rab'[ative criterion of dynamical chaos. The motion is said to be
frequency of moving atomE. (24)] is small as compared chaotic whenA>0. We have computed the maximal

with its amplitude value. In Hamiltonian systems, the sto- .
chastic layer in the vicinity of an unperturbed separatrix eX_Lyapunov exponents of the atom-field syst€rg) under the

ists under any arbitrary small perturbation strenigt, 22 p_e_rturb.atmn in the forn{35) with the following initial con-

. . e ditions: no photon present and the atoms strongly correlated
Due to intersections of stable and unstable homoclinic maniz, o
folds invariant KAM tori cannot survive in such a layer. As T
the perturbation strength increases, the chaotic dynamics,

typically, must cover extended regions of phase space. |4(0)),=]0)® E,o>; (nozzozuozvozo, rozl ,

In order to study transition to global chaos we will assume 2 4
atoms moving through a cavity in a directiaralong which (37)
:Bﬁcigitlal variation of a cavity mode is described by theand no photons present and the atoms uncorrelateer 8t

N N
X .
f(x)=siani. (34) [4(0)),=|0)® 5,5>- (No=ro=Up=v0=0, zp=1).
Cc

(38)
It corresponds to d E, mode in a rectangular cavity with, ) ) ] )
being the cavity length and+ 1 being the number of nodes As was shown in the preceding subsection, both atomic

in the cavity. Then the vacuum Rabi frequency becomes th&l@tes can be prepared from the ground atomic state by a
time-periodic function classical pulse of the appropiate area just before injecting the

atoms into a cavity.
Qn(7)=Qpsinbor, (35) Numerical experiments have been carried out for the dy-
namical system(10) with those values of parameters that
where the normalized cavity frequendthe dimensionless may be considered as achievable, in principle, with a Ryd-
detuning is w=pwc/L . w,. berg atom maser, a device operating with Rydberg two-level
The origin of dynamical chaos is in extremal sensitive toatoms moving through a hig@-superconducting microwave
initial conditions which is characterized by the Lyapunov cavity [3,8,17]. This device can be really operated in the

exponents regime when all the assumptions adopted in our mdsied
1 AR Sec. l) may be considered as valid. In the strong-coupling
ey T i(7 regime, the one-photon vacuum Rabi frequency of a single

Ni T“_TJ}"(T)’ Ni(7) Ai!:)r)n_)()r InAi(O)’ (36) atom may react),=10° rad/s[17]. The period of collec-

tive vacuum Rabi oscillations 72/Q)¢/N is much shorter
where A(7) is the distance between two initially adjacent than the lifetimes of Rydberg states and microwave photons
trajectories at timer, which may be specified as the Euclid- (=10 2 s) in a few centimeter size cavity wi@=10". It
ean distance between two phase-space points. Due to twaplies the Hamiltonian approach, strong-coupling limit,
conserved quantitieél2) and (13), the motion of the five- pointlike, and Raman-Nath approximations adopted to be
dimensional atom-field system with moving atorfi®) is  valid. Typical transition frequencies between working Ryd-
restricted on a three-dimensional hypersurface and charactdperg states are in the range,~10"°-10"* rad/s. The di-
ized by three Lyapunov numbers;(,i=1,2,3). The volume mensionless single-atom and collective vacuum Rabi fre-
of a given element of the phase space of our conservativguencies with the given value 61, are estimated to be in
system should be invariant, i.e.; +\,+X\3=0. Therefore, the rangesQ=Qq/w,=10"°-10* and Qy=Q0/N/w,
we have positive, negative, and zero Lyapunov exponents. H=1-10 (with N=10'9), respectively.
\;<0, then the volume element shrinks in the corresponding First of all, we compute the maximal Lyapunov exponent
direction, and if\;>0, then it expands exponentially in that A as a function of the number of atondThe numerical
direction. One has the linear growthNf=0. A chaotic flow simulations are run for the nonresonant case;0.9, with
arises when the initial volume element stretches, shrinks, anthe dimensionless single-atom vacuum Rabi frequeficy
folds (for a review of dynamical chaos in Hamiltonian sys- =10 ° and the dimensionless velocity of atotms 0.01 and
tems see Refqd.20,22,23). Because of the global confine- 0.001. Figure 1 demonstrates the dependence of the maximal
ment in phase space of the atom-field system, the local ex-yapunov exponent on the common logarithm of the number
ponential divergence of trajectories, which produces a locabf atoms for the superradiant initial conditi¢i7). There is a
stretching, is accompanied by folding. Repeated stretchingurious structure of the dependenc@og;oN) in the begin-
and folding produces homoclinic chaos in cooperative emisning of transition to global chaos. Figuré)l shows enlarge-
sion and absorption by moving two-level atoms. For chaotianent of this structure. Quite regular peaks on a fine scale
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FIG. 1. (a) Dependence of the maximal Lyapunov exponknt FIG. 2. Dependenck(N) on a logarithmic scale for the super-
on the number of atoml on a logarithmic scale for the superradi- flyorescent initial atomic statN/2,N/2):Q=10"%0=0.9. (@) b
ant initial atomic statgN/2,0):Q=10"°%,0=0.9p=0.01; (b) en-  =0.01;(b) b=0.001. All variables and parameters are in the same

largement of the initial portion of this dependence. All variables dimensionless units as in Fig. 1.
and parameters are in dimensionless uni¥=Q,/w,, o
=w;ilw,, andb=v,/c. . .
Behavior of the maximal Lyapunov exponent near the
. . ) tom-cavity resonance is computed @f,=8.5, N=10',
reflect an intermittent route to chaos and a possible Cascatg%dv —3x10° m/sfo=0.001) with initially fully inverted
: : . X a .
of bifurcations when changing the number of atoms in anioms and shown in Fig. 3. At exact resonance, the atom-

atomic “droplet’ to be injected into a cavity. Under the field dynamics was analytically shown in Sec. Il to be regu-
superradiant initial condition and with given Rabi frequency Yy y y ' gu
r. In this casex should be equal to zero as one can see in

and the detuning, vacuum Rabi oscillations becomes chaot?ﬁ X .
whenN reaches=1¢° atoms the figure atw=1. Nearby the exact resonance, Fig. 3 shows

Figure 2a) demonstrates the dependendgdog;(N) with ~ Very strong chaos with the val_ues )of_of f[he order _of unity.
initially fully inverted atoms[see Eq(39)] at the same fixed Dependence ok on the velocity of initially fully inverted
values of the control parameters as in Fig. 1. It should b@toms has been computed 8f,=8.4, N=10'% and
stressed that with the superfluorescent atoms the strength &f0.9. A fragment of this rather irregular dependence on a
chaos measured by the value dofat a fixed value oN is  logarithmic scale in the velocity range,=3x10'-3
almost ten times more than that with the superradiant atoms< 10° m/s is shown in Fig. 4. Weak chaos#0.01) begins
and chaos begins to show up with=10® atoms. As a result to show up with the velocity of atoms of the order ©f
of extremal instability of the system with initially fully in- =3x10* m/s.
verted atoms, the respective dependendéog;(N) is a It should be stressed that chaos arises in the adiabatic
highly irregular one. In Fig. @) the dependence of on the  regime of the parametric vacuum Rabi oscillatiorgy
number of atoms is computed 8&=0.001, i.e., atv,=3 <Oy, where the frequency of the spatial modulation is
X 10° m/s. much less than the collective vacuum Rabi frequency, that is,
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FIG. 3. Dependence of on the normalized cavity frequendgdimensionless detunifngiear the atom-cavity resonance for the super-
fluorescent initial atomic stateQ)y=8.5N= 10", andb=0.001. All variables and parameters are in the same dimensionless units as in Fig.
1 with Q=00 VN/w,.

the frequency of the energy exchange between the collectioity to initial atomic state. The basic results of our study are as
of N identical atoms and a cavity mode. follows.
The dynamical equations for quantum expectation values
that take into account quantum atomic correlatiérespon-
V. CONCLUSION sible for the cooperative spontaneous emissane derived.
The equations of motion are shown to be integrable in the
Under appropriate conditions, cooperative spontaneoulmit of exact resonance between moving atoms and a spa-
emission from moving two-level atoms becomes a reversiblgially inhomogeneous cavity mode and in the limit of a spa-
process. In the present work we have shown that the simplesitlly homogeneous field interacting with nonresonant atoms.
model of this process may demonstrate a very complicate@he respective vacuum Rabi oscillations may be considered
dynamics which is chaotic in the sense of extremal sensitivas periodic in these limits.
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N |

00

. . |
45 50 logy, &5

FIG. 4. Dependence of on the velocity of atomsgin m/s unitg on a logarithmic scale for the superfluorescent initial atomic state :
Qn=8.4,N=10" andw=0.9.
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In general, moving nonresonant atoms may demonstratewsould be worthwhile to search for the chaotic vacuum Rabi
type of reversible spontaneous emission, chaotic vacuurascillations in real experiments.
Rabi oscillations, which are shown to be of a homoclinic Rydberg atoms in superconducting microwave cavities
nature. This process depends strongly on the initial prepar@re a well-suited system to observe manifestations of quan-
tion of atoms just before injecting into a cavity. Under thetum chaos in the vacuum Rabil oscillations. This device can
other equal conditions, chaos is much stronger with atoms tB€ actually operated in the regime when all the assumptions
be prepared in the fully inverted stad/2 N/2) than with ~ @dopted in our model may be considered as valid.
those prepared initially in the superradiant s{&té2,0). The
numerical experiments computing maximal Lyapunov expo-
nents predict the values of the control parametérs detun- This work was supported by Grant No. 99-02-17269 from
ing, the velocity, and the number of atom®r which it  the Russian Foundation for Basic Research.
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